Síguenos en Facebook

Ocho problemas matemáticos sin solución son descubiertos

Ocho-problemas-matematicos-sin-solucion-son-descubiertos-2.jpg iStockphoto/Thinkstock

Si estás adentrado en el mundo de la matemática, sabrás que existen muchos problemas sin solución. Sin embargo, recientemente se han hallados las soluciones a dos bastante importantes relacionados con los números primos: la conjetura débil de Goldbach y la conjetura de los primos gemelos. Hoy te explicamos ocho problemas matemáticos sin solución que finalmente son descubiertos.

Problemas matemáticos sin (aparente) solución

La conjetura débil de Goldbach

La conjetura de Goldbach, un problema sin solución de 271 años ha sido resuelto por Harald Andrés Helfgott (Perú). Él demostró que cualquier número primo mayor a 5 puede ser la suma de tres números primos, mediante un manuscrito de 133 páginas en el que se aplica el método del círculo desarrollado por Hardy en 1917.

La conjetura de los primos gemelos

Yitang Zhang, profesor de matemáticas de la Universidad de New Hampshire resolvió el problema de los números primos gemelos, números primos separados por una distancia de dos. Según esta conjetura, existen infinitos pares de los mismos.

El número primo más grande del mundo

Ocho-problemas-matematicos-sin-solucion-son-descubiertos-1.jpg iStockphoto/Thinkstock

No es un problema matemático en sí, pero el profesor de la University of Central Missouri descubrió cuál es el mayor número primo: 2 elevado a la 57885161 -1, y tiene 17 millones de digitos. Si lo escribiéramos en un tipo de letra estándar, sería capaz de llenar seis Biblias. ¿Impresionante, no?

Subespacios invariantes en espacios de Hilbert

Eva Gallardo y Carl Cowen presentaron una respuesta al problema de os subespacios invariantes en espacios de Hilbert, que muchos matemáticos consideran que debería ser planteado como uno de los “problemas del milenio”.

El problema de Newton resuelto por un adolescente

Shouryya Ray, un joven de 16 años de edad, resolvía un enigma matemático que propuso Sir Isaac Newton hace más de 350 años. Resolvió dos teorías sobre la dinámica de partículas fundamentales,de forma que ahora se puede calcular la trayectoria de vuelo de una bola tirada , predir cómo va a golpear y rebotar en la pared.

La singularidad

Ocho-problemas-matematicos-sin-solucion-son-descubiertos-3.jpg iStockphoto/Thinkstock

Javier Fernández de Bobadilla y María Pe Pereira descubrieron una conjetura de Nash en la que se plantea el concepto de singularidad. Demostraron que este problema es cierto en dos dimensiones.

La conjetura de Hirsch

Francisco Santos, un español, resolvió la conjetura de Hirsch, que decía que la gráfica de un politopo d-dimensional con n facetas tiene un diámetro inferior a n-d., lo que quiere decir que los vértices pueden estar conectados entre sí por un camino n-d ejes.

La ecuación de Boltzmann

Robert Strain y Philip Gressman de la Universidad de Pensylvania, han descubierto la ecuación de Boltzmann, un problema de 140 años que predice el movimiento de las moléculas de gas.

¿Qué te han parecido estos ocho problemas matemáticos sin solución que han sido descubiertos?

Artículos recomendados

5 Comentarios

Y-la-de-E=MC2?

Dom, 2013-06-02 20:46

Fine

Lun, 2013-06-03 18:01

Muy bueno Lucia, solo quisiera decir que ¿por qué no tienen la opción de responder a otros usuarios? ¿O el administrador a los visitantes?

Bueno creo que es para evitar discusiones y vulgaridades. Saludos, ¡lindo post! :D

Lun, 2013-06-03 19:56

- Yitang Zhang no ha resuelto la conjetura de los primos gemelos, ni mucho menos. Ha obtenido un resultado interesante relacionado con ella, pero ni de lejos ha resuelto ese problema.

- En la demostración de Cowen y Gallardo del problema del subespacio invariante se encontró un error que la invalida, por lo que este problema todavía no está resuelto.

- Shouryya Ray no resolvió ningún problema que estuviera sin resolver hasta ahora. Yo mismo caí en el mismo error, aunque luego lo arreglé:

http://gaussianos.com/shouryya-ray-genio-de-16-anos-que-ha-resuelto-un-p...

Saludos.

Mié, 2013-06-05 14:40

¡Los números primos son infinitos! Por lo tanto no hay uno que sea mayor, y se demuestra fácilmente por el absurdo.

Si alguien lo quiere ver: http://www.youtube.com/watch?v=CB1C0kGPQuE

Lun, 2013-11-04 16:25
El contenido de este campo se mantiene privado y no se mostrará públicamente.